Search results for "Phase plane analysis"

showing 4 items of 4 documents

Elektro-Okulographie bei Hirnstammerkrankungen

2011

Zusammenfassung Augenbewegungsstorungen sind haufige und typische Symptomen von Hirnstammerkrankungen. Hier liegt die Bedeutung der Elektrookulographie in erster Linie in der Aufdeckung subklinischer Veranderungen (Abb. 1) und weniger in der Bestatigung klinisch evidenter Storungen. Hierzu eignet sich vor allem die Aufzeichnung von Willkursakkaden, die im Allgemeinen bezuglich Geschwindigkeit und Zielgenauigkeit analysiert werden. Hiermit konnen bei Patienten mit multipler Sklerose oder Bewegungsstorungen (M. Parkinson, progressive supranukleare Parese, Chorea Huntington) eine Reihe recht typischer Befunde erhoben werden, die bei der Diagnose hilfreich sein konnen. Dabei legen neuere Studie…

PhysicsGynecologymedicine.medical_specialtyPhysiology (medical)medicinePhase plane analysisNeurology (clinical)Electro-oculographyPathology and Forensic MedicineDas Neurophysiologie-Labor
researchProduct

Multiplicity of ground states for the scalar curvature equation

2019

We study existence and multiplicity of radial ground states for the scalar curvature equation $$\begin{aligned} \Delta u+ K(|x|)\, u^{\frac{n+2}{n-2}}=0, \quad x\in {{\mathbb {R}}}^n, \quad n>2, \end{aligned}$$when the function $$K:{{\mathbb {R}}}^+\rightarrow {{\mathbb {R}}}^+$$ is bounded above and below by two positive constants, i.e. $$0 0$$, it is decreasing in (0, 1) and increasing in $$(1,+\infty )$$. Chen and Lin (Commun Partial Differ Equ 24:785–799, 1999) had shown the existence of a large number of bubble tower solutions if K is a sufficiently small perturbation of a positive constant. Our main purpose is to improve such a result by considering a non-perturbative situation: we ar…

Multiplicity resultsBubble tower solutions; Fowler transformation; Ground states; Invariant manifold; Multiplicity results; Phase plane analysis; Scalar curvature equation; Shooting methodGround stateMultiplicity resultsInvariant manifoldScalar curvature equation01 natural sciencesBubble tower solutionsCombinatoricsSettore MAT/05 - Analisi Matematica0103 physical sciencesinvariant manifoldground stateScalar curvature equation Ground states Fowler transformation Invariant manifold Shooting method Bubble tower solutions Phase plane analysis Multiplicity resultsFowler transformationMultiplicity result0101 mathematicsphase plane analysiPhase plane analysisPhysicsApplied Mathematics010102 general mathematicsscalar curvature equationShooting methodMultiplicity (mathematics)shooting methodPhase plane analysiGround statesBubble tower solutionbubble tower solutionmultiplicity results.Phase plane analysis010307 mathematical physicsInvariant manifoldScalar curvature
researchProduct

Multiplicity of Radial Ground States for the Scalar Curvature Equation Without Reciprocal Symmetry

2022

AbstractWe study existence and multiplicity of positive ground states for the scalar curvature equation $$\begin{aligned} \varDelta u+ K(|x|)\, u^{\frac{n+2}{n-2}}=0, \quad x\in {{\mathbb {R}}}^n\,, \quad n>2, \end{aligned}$$ Δ u + K ( | x | ) u n + 2 n - 2 = 0 , x ∈ R n , n > 2 , when the function $$K:{{\mathbb {R}}}^+\rightarrow {{\mathbb {R}}}^+$$ K : R + → R + is bounded above and below by two positive constants, i.e. $$0<\underline{K} \le K(r) \le \overline{K}$$ 0 < K ̲ ≤ K ( r ) ≤ K ¯ for every $$r > 0$$ r > 0 , it is decreasing in $$(0,{{{\mathcal {R}}}})$$ ( 0 , R ) and increasing in $$({{{\mathcal {R}}}},+\infty )$$ ( R , + ∞ ) for a certain $${{{\mathcal {R}}}}&g…

Multiplicity resultsGround state010102 general mathematicsMultiplicity (mathematics)Scalar curvature equation01 natural sciencesPhase plane analysiGround statesBubble tower solutions010101 applied mathematicsCombinatoricsSettore MAT/05 - Analisi MatematicaBubble tower solutionFowler transformationScalar curvature equation; Ground states; Fowler transformation; Invariant manifold; Bubble tower solutions; Phase plane analysis; Multiplicity resultsMultiplicity result0101 mathematicsNon-perturbativeInvariant manifoldGround stateAnalysisReciprocalPhase plane analysisScalar curvatureMathematicsJournal of Dynamics and Differential Equations
researchProduct

Phase Plane Analysis of Web Drying

2004

The mathematical model which describes the web drying in the papermaking machine has been carried out in the collaboration between our institute and joint-stock company “Paper Mill ‘Ligatne’” engineers. The general principles of this develpopment were underlined in the report [zz00]. Under some simplifying assumptions this model can be reduced to the nonlinear moisture — temperature phase plane equation. This equation promotes to obtain significant physical parameters used in the mathematical model, clarifies the causes which allow to optimize the papermaking machine drying cylinders temperature regime. The phase plane equation also explains the parabolic temperature distribution in a serie…

Engineering drawingNonlinear systemFiber saturation pointDistribution (mathematics)Series (mathematics)PapermakingSteam temperatureMechanical engineeringPhase plane analysisPhase planeMathematics
researchProduct